

Better Buildings Series: Advantages of Retrofit vs. New Build

19/11/2020

Agenda

- Terminology
- Why Retrofit
- What/How to Retrofit (in an earth-friendly way)
- When to Retrofit
- Retrofits and Code Compliance

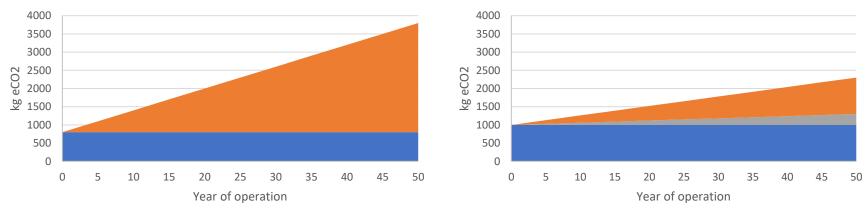
Terminology

- Embodied Carbon
 - Cumulative life cycle CO2-equivalent greenhouse gases (eCO2) associated with a building's materials and construction (does not include emissions associated with building operation)
 - Also referred to as "Upfront Carbon" (= material EC + construction emissions)
- Energy Use Intensity (EUI)
 - Annual energy consumption per unit area (typically kWh/m2 or kWh/sqft)
- Retrofit/Renovation/Alteration
 - Often used interchangeably to describe modifications/upgrades to buildings

Why Retrofit?

1. Value of Existing Buildings

Source: https://www.tpsgc-pwgsc.gc.ca/citeparlementaireparliamentaryprecinct/rehabilitation/ouestgalerie-westgallery-eng.html


1. Value of Existing Buildings

- Cultural
 - Buildings can be an important piece of local/national culture
- Economic
 - Retrofits in urban areas preserve urban centers
 - Less disruption to neighbouring buildings (e.g. Spring Garden Road)
- Environmental: Preservation of resources
 - Structural components can last 100s of years
 - Some is recyclable, but...

2. Lower Embodied Carbon

- New buildings have a high ratio of EC:OC
- In high-performance buildings, embodied carbon can account for 90% of a building's lifetime carbon
 - To reduce carbon footprint, materials are as important as energy use

Pre-2005 Building

New Building (standard and advanced)

Embodied Carbon Operational Carbon

Embodied Carbon Operational Carbon (adv.) Operational Carbon (std.)

Hypothetical buildings, based on findings in Rock et al. (2020)

Mitigating Embodied Carbon through Retrofit

- Steel and Cement account for a high proportion of embodied carbon in buildings
 - Manufacturing of iron, steel, & cement accounts for ~5% of global GHG emissions (IEA, 2019)
 - Demand for these materials has increased 3x for steel, 7x for cement since 1970s
- Retrofitting significantly reduces steel and cement input compared to a new building

3. Emissions Reduction Opportunity

- Upgrades to existing buildings (retrofits, recommissioning, fuel switching) could decrease building sector emissions by 50% (CaGBC, 2017)
 - This would meet the entire national 2030 emissions target

	Major Retrofit	Standard New Building
Immediately eliminates an energy- consuming old building	\checkmark	X
Minimizes material inputs		X
Preserves cultural significance		X
Reduces construction disruption		X
Is energy efficient & comfortable for occupants	\checkmark	
Provides a necessary service (office, housing, school, etc)	\checkmark	

How-to: Climate-Friendly Retrofits

Maximize the positive environmental impact

8 tips for a climate-friendly retrofit

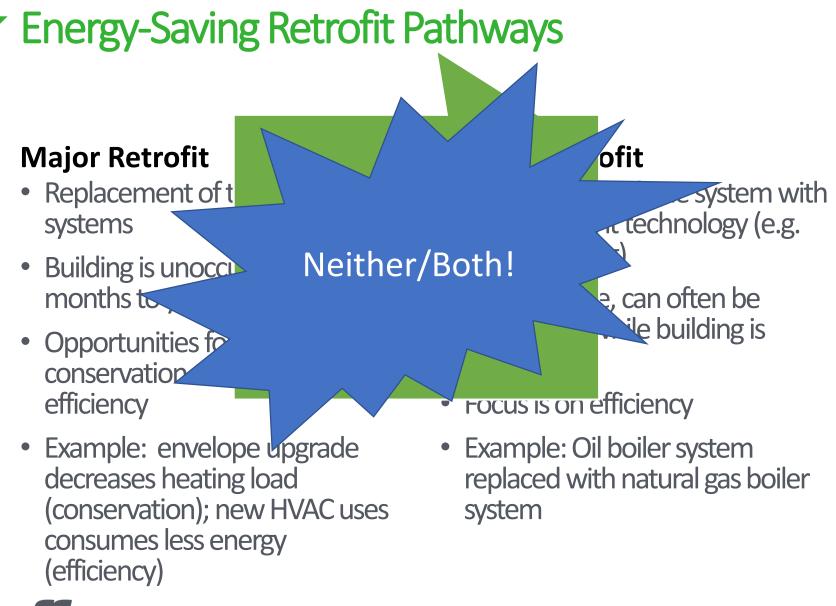
- 1. Start planning early
 - Determine the existing benchmark
 - Conduct an audit (level II or III)
 - Set performance goals
- 2. Consider various design options
 - Integrated design is still valuable for retrofits
 - Use an energy model to evaluate alternatives
- 3. Consider impacts on existing/remaining systems
 - Avoid unintended post-retrofit renovations
- 4. Select materials with low embodied carbon and high renewable content
 - e.g. cellulose insulation
 - Locally-sourced will further decrease building's EC

5. Select systems/equipment with long expected useful life

- Water-to-air heat pumps 25 years, air-to-air 17 years
- Passive solar heating never expires

6. Manage demolition waste

- Salvage materials and donate
- Sort demo waste for proper disposal
- Always use qualified demo contractors to avoid contaminant leakage (e.g. oil spills, refrigerant leaks)


7. Be open to change (in concept and cost)

- Retrofits can be messy (as can new construction)
- Old buildings are full of surprises (some interesting, some expensive)

8. Monitor the results

- Track savings and analyze payback
- Document lessons-learned

Energy-Saving Retrofit Pathways

Major Retrofit

✓ Saves energy

✓ Reduces GHGs

System Retrofit

✓ Saves energy✓ Reduces GHGs

When to Retrofit?

F The best time to [design for efficiency] was 20 years ago; the next best time is now.

Chinese Proverb - modified

Opportunities for Energy-Efficient Retrofits

Replacement of end-oflife systems

Repair of damaged infrastructure

Planned aesthetic upgrades

Conversion to a different usage type

Example: Replacement of end-of-life systems

- An office tower built in the 1990s is heated with fuel-fired hydronic baseboards
- The boilers are now 30 years old and need to be upgraded
- The boilers will be replaced with newer, more efficient technology

And...?

What else could be done during this retrofit to increase the building's energy efficiency?


Examples: Repair of damaged infrastructure

- A commercial building sustains roof damage in a hurricane
 - Opportunity to increase roof insulation during the repair
- A plumbing failure results in significant interior water damage
 - Can intrusive energy-efficiency upgrades be implemented while the building is unoccupied?
- An apartment building's envelope requires remediation of moisture ingress damages
 - Opportunity to improve envelope performance

Code Compliance

Old Meets New: Proceed With Caution

- Gaps/contradictions in building codes can lead to unintended consequences
- Risks for health and safety of occupants
- Examples:
 - Fire safety
 - Mold/water damage
 - Snow loading

References

Canadian Green Building Council (CaGBC). (2020, March). Zero Carbon Building Design Standard Version 2.

Canadian Green Building Council. (2017). A Roadmap for Retrofits in Canada: Charting a Path Forward for Large Buildings.

Energy Star Portfolio Manager. (2018). Canadian Energy Use Intensity by Property Type.

International Energy Agency (IEA). (2019). *Material Efficiency in Clean Energy Transitions*.

Natural Resources Canada. (n.d.). *Commercial/Institutional GHG Emissions by Energy Source, End Use and Activity Type – Including Electricity-Related Emissions*.

Retrieved from Office of Energy Efficiency:

https://oee.nrcan.gc.ca/corporate/statistics/neud/dpa/showTable.cfm?type=HB§or=com&juri s=00&rn=2&page=0

Rock, M., Mendes Saade, M. R., Balouktsi, M., Rasmussen, F. N., Birgisdottir, H., Frischknecht, R., . . . Passer, A. (2019, November 28). Embodied GHG emissions of buildings - The hidden challenge for effective climate change mitigation. *Applied Energy*.

