Monetizing Building Sustainability

Monetizing Sustainability The Total Cost of Building Ownership NS Ecology Action Centre – Better Buildings Speakers Series

Jim Nostedt, P. Eng.

Objectives of a SEEFAR-Valuation ©

- 1. Reduce GHG emissions and the Total Cost of Building Ownership
- 2. Show that New High-Performance buildings have higher value than Code Built
- 3. Show that a deep retrofit can achieve Net Zero Ready with higher value than the existing building over its remaining useful life
- 4. Optimize the building renewal investment

What is the Total Cost of Building Ownership (TCBO)?

- TCBO is the life cycle cost analysis of the building based on all major building operating, age-related renewal and maintenance costs:
 - Utilities and Carbon Tax
 - Component Maintenance & Renewal
 - Mortgage Interest
 - Insurance
 - Property Tax

Why is TCBO so important?

- Because 90% of the cost of ownership occurs after construction is complete
- Your building that cost \$1 million to build will cost you \$9,000,000 to own and operate over its useful life
- Design costs were only \$100,000 or 1% of the TCBO, so don't short change on design costs
- Don't miss the opportunity to optimize the investment at the design stage

High Performance versus Low Energy

- Sustainability is more than just energy
- Integrate and Optimize all building performance attributes:
 - Energy Efficiency
 - GHG reduction
 - Embodied carbon
 - Durability
 - Life-cycle performance
 - Occupant comfort and productivity

SEEFAR Analysis of *New* **Buildings has shown:**

- 1. High-Performance Buildings cost 3 to 10% more to build, but
- 2. Have a 30 to 40% lower Total Cost of Building Ownership (TCBO)

SEEFAR Analysis of *New* Buildings

Tal	ole 3	Building A	Building B	Building C	Building D
Ro	W	Code Built	Code Built with solar panels	Hi Perf Home	High Perf with solar panels
1	GHG emission (kg) (60 Years)	6,608,000	5,149,000	2,071,000	612,000
2	EUI (kWh/m2/yr.)	173	135	49	15
3	TCBO at 12 Years	\$315,000	\$309,000	\$251,000	\$245,000
4	TCBO at 27 Years	\$834,000	\$824,000	\$560,000	\$550,000
5	TCBO at 60 years	\$3,060,000	\$2,821,000	\$1,658,000	\$1,419,000
6	Home Equity at 60 years	\$1,294,000	\$1,358,000	\$1,496,000	\$1,561,000
7	Net Cost of Home Ownership	-\$1,766,000	-\$1,463,000	-\$162,000	\$142,000
8	Average Monthly Cost of Ownership over 60 Years	-\$2,500	-\$2,000	-\$200	\$200

- How long do plan on living in your current home?
- What if you do not plan to live in your home for 60 years, how do you get the added value out of your high performance home?

Getting the Value out of your High Performance Building:

- Every building that is applying for a commercial mortgage must be appraised
- Most appraisals are based on comparative analysis
- What do appraisers know about high performance buildings?
- Our SEEFAR analysis provides an appraisal report to identify the higher value in real terms.

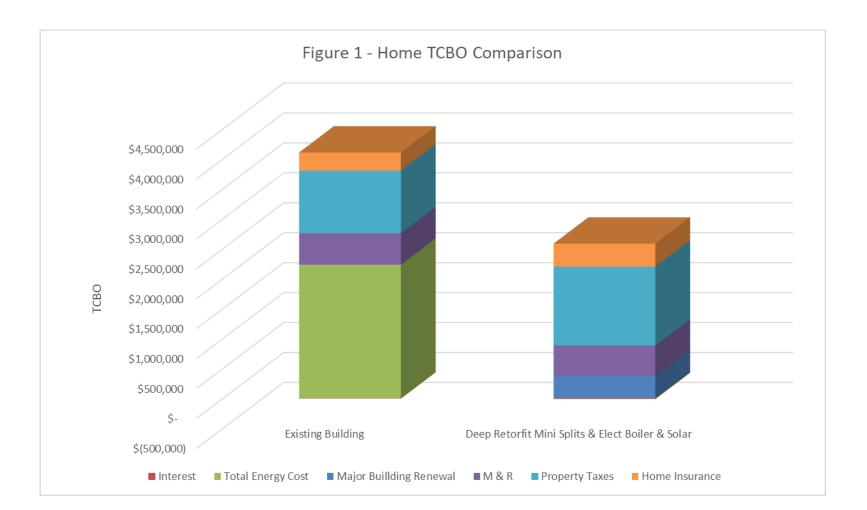
Existing Buildings

- Are the elephant in the room
- How do we evaluate existing buildings?

Conventional Financial Analysis – Would you Invest in this Project?

- Simple payback 6 Years
- Return on Investment (ROI) 24% over 60 years
- Net Present Value (NPV) \$598,000 @ 2% DR over 60 years
- TCBO considers cost of capital, escalation of energy, materials
 - etc., carbon tax, property tax, insurance, M & R

Table 4	Building A	Building C		
Total Cost of Building Ownership (TCBO) Row	Existing Building	Deep Retorfit Mini Splits & Elect Boiler & Solar	Total Savings A to C	Total Savings A to C
TCBO at 60 years	\$ 4,111,000	\$ 2,579,000	\$ 1,532,000	37%



Deep Retrofit - Total Cost of Building Ownership

Ro	Total Cost of Building Ownership (TCBO)	Existing Building	Deep Retorfit Mini Splits & Elect Boiler & Solar	Total Savings A to C	Total Savings A to C
	1 GHG emission (kg) (60 Years)	28,000	(1,000)	29,000	104%
2	2 EUI (kWh/m2/year)	155	(2)	157	101%
	3 TCBO at 12 Years	\$ 439,000	\$ 639,000	\$ -200,000	-46%
	4 TCBO at 25 Years	\$ 1,052,000	\$ 1,055,000	\$ -3,000	0%
f	5 TCBO at 60 years	\$ 4,111,000	\$ 2,579,000	\$ 1,532,000	37%
e	6 Building Equity at 60 years	\$ 3,095,000	\$ 3,900,000	\$ -805,000	-26%
7	7 Net Cost of Home Ownership	\$ 1,016,000	\$ -1,321,000	\$ 2,337,000	230%
8	₈ Savings/year			\$ 39,000	
ģ	9 Incremental Difference in Capital Cost		\$ 351,000	\$ 351,000	
	Average Monthly Cost of Ownership over 60 years	\$ 5,710	\$ 3,580	\$ 2,130	37%

Base Case vs Deep Retrofit

Key Findings

- Adding solar PV panels to the Deep Retrofit achieved Net Zero and reduced the 60-year TCBO by \$1.5 million
- Order of Optimizing investment value is important:
 - reducing load and improving durability,
 - electrifying to reduce GHG emissions,
 - adding solar to get to Net Zero
- Start SEEFAR-Valuation

 at the beginning of the project to help optimize and generate high quality input data
- Go all the way to high performance the first time

Data Used for the SEEFAR-Valuation©

- Energy Model for existing and for options
- Energy / GHG unit costs & annual escalation rate
- Establish existing building TCBO (like an FCA)

For each major building component:

- Capital cost
- Energy consumption
- GHG emissions
- Useful life
- Current age

- Annual maintenance cost
- Replacement cost escalation
- Improvement in energy efficiency
 at replacement
- Cost of capital

How Can a SEEFAR-Valuation© Help Investors & Owners

- To understand the ongoing costs for energy, maintenance, insurance, property taxes, and cost of capital for the building
- (When a new building is being designed has anyone every asked for what it will cost to own and operate?)
- To reduce the TCBO
- Provide appraisers with the monetized value of the high performance building
- Lower TCBO means higher profit and lower rent

Who Wins or Benefits When a High Performance Building is constructed?

Who Wins With High Performance Buildings?

- The Owner, the TCBO is lower and more resilient to climate change
- The design team because their design fees are higher
- The contractor who constructs it because the capital cost is higher, so profit is higher
- The bank because they loaned more money and the O & M costs are lower so there are less owner defaults
- The occupant or renter because their costs are lower and the building is more comfortable with better air quality

Monetizing Building Sustainability

If you own more than one building (a portfolio) how would your approach to reducing energy and GHG emissions change?

Monetizing Sustainability The Total Cost of Portfolio Ownership

Jim Nostedt, P. Eng.

Don't be distracted by the myth that "every little (bit) helps."

If everyone does a little, we'll only achieve only a little.

We must do a lot.

What's required are big changes in demand and supply **Approach**.

"Sustainable Energy — without the hot air" - David JC MacKay

Overview

- New Approach
- Goals & Challenges in meeting goals
- Effective approach to goals
- Challenges with current approach
- Total Cost of Portfolio Ownership (TCPO) is the key
- How do we move forward

New Approach

- This is not a technical problem
- We have the technical knowledge to achieve net zero now, but
- It is a extremely large financial investment problem
- The solution requires integration of technical and financial aspects

Goals

- Ultimate goal no fossil fuel burning
- Reduce the Total Cost of Portfolio Ownership

Challenges in meeting goals

- All levels of government have a large asset base
- No significant work done to date
- Maintenance backlog is huge (\$1000/m2)
- The problem is big, getting bigger and will require a huge level of effort
- Effort must be sustained over useful life of assets
- Survive change of personnel and government
- View that we cannot afford to make the changes
- Space utilization is big problem, GSA only 30%

Current Approach to Goals

- Energy reduction approaches short term measures, 20% reduction
 - Building Automation Systems
 - Variable Speed Drives
 - LED lighting
 - Heat Pumps
- These will not get us net zero and what is worse our TCPO will be higher

Effective Approach to Goals

- Large goals broken into smaller ones is good
- But not incremental goals for infrastructure
 - 10%, 20%, 30%, Net Zero (ultimate goal)
 - Short payback first, then longer and longer
 - Visit the same building many times
 - Short payback measures needed to help finance long term
- Need to look at TCPO for useful life of the assets
- Tackle GHG reduction, maintenance backlog and space utilization at the same time
- Get rid of surplus space
- Tackle fewer buildings, but do them all the way to net zero the first time

"The Total Cost of Portfolio Ownership" the integration of space management, and life-cycle management, and sustainability

- Know what you need
- Know what you have
- Know the condition of assets (FCA)
- Decide what's surplus, what's to be replaced, what's to be maintained prioritize
- Know "Total Cost of Building Ownership" reduce through deep retrofits, energy audits and SEEFAR valuation ©

The Way Forward

- A pilot project of at least 10 buildings
- A specialized team of financial and technical experts from a wide cross section of government and industry (direct award, not tendered)
- Dedicated, unrestricted funding for the pilot
- Develop the knowledge to transfer to government, provinces, municipalities, and industry

Whatever you can do or dream you can, begin it. Boldness has genius, power and magic in it. Begin it now. Goethe

Questions and Discussion

Jim Nostedt, P. Eng SEEFAR Building Analytic Inc. Jim@seefar-value.com 431 373 8255